Selasa, 17 Juni 2014

Sejarah Sistem Digital Dan Analog serta Pengertian,Perbedaan, Keunggulan dan kelemahan Sistem Digital Dan Analog



Sistem digital merupakan bentuk sampling dari sytem analog. digital pada dasarnya di code-kan dalam bentuk biner (atau Hexa). besarnya nilai suatu sistem digital dibatasi oleh lebarnya / jumlah bit (bandwidth). jumlah bit juga sangat mempengaruhi nilai akurasi sistem digital. Contoh kasus ada sistem digital dengan lebar 1 byte (8 bit). maka nilai-nilai yang dapat dikenali oleh sistem adalah bilangan bulat dari 0 – 255 ( 256 nilai : 2 pangkat 8 ).
Pada sistem analog, terdapat amplifier di sepanjang jalur transmisi. Setiap amplifier menghasilkan penguatan (gain), baik menguatkan sinyal pesan maupun noise tambahan yang menyertai di sepanjang jalur transmisi tersebut. Pada sistem digital, amplifier digantikan regenerative repeater. Fungsi repeater selain menguatkan sinyal, juga “membersihkan” sinyal tersebut dari noise. Pada sinyal “unipolar baseband”, sinyal input hanya mempunyai dua nilai – 0 atau 1. Jadi repeater harus memutuskan, mana dari kedua kemungkinan tersebut yang boleh ditampilkan pada interval waktu tertentu, untuk menjadi nilai sesungguhnya di sisi terima.
Keuntungan kedua dari sistem komunikasi digital adalah bahwa kita berhubungan dengan nilai-nilai, bukan dengan bentuk gelombang. Nilai-nilai bisa dimanipulasi dengan rangkaian rangkaian logika, atau jika perlu, dengan mikroprosesor. Operasi-operasi matematika yang rumit bisa secara mudah ditampilkan untuk mendapatkan fungsi-fungsi pemrosesan sinyal atau keamanan dalam transmisi sinyal.
Keuntungan ketiga berhubungan dengan range dinamis. Kita dapat mengilustrasikan hubungan ini dalam sebuah contoh. Perekaman disk piringan hitam analog mempunyai masalah terhadap range dinamik yang terbatas. Suara-suara yang sangat keras memerlukan variasi bentuk alur yang ekstrim, dan sulit bagi jarum perekam untuk mengikuti variasi-variasi tersebut. Sementara perekaman secara digital tidak mengalami masalah, karena semua nilai amplitudo-nya, baik yang sangat tinggi maupun yang sangat rendah, ditransmisikan menggunakan urutan sinyal terbatas yang sama.
Namun di dunia ini tidak ada yang ideal, demikian pula halnya dengan sistem komunikasi digital. Kerugian sistem digital dibandingkan dengan sistem analog adalah, bahwa sistem digital memerlukan bandwidth yang besar. Sebagai contoh, sebuah kanal suara tunggal dapat ditransmisikan menggunakan single -sideband AM dengan bandwidth yang kurang dari 5 kHz. Dengan menggunakan sistem digital, untuk mentransmisikan sinyal yang sama, diperlukan bandwidth hingga empat kali dari sistem analog. Kerugian yang lain adalah selalu harus tersedia sinkronisasi. Ini penting bagi sistem untuk mengetahui kapan setiap simbol yang terkirim mulai dan kapan berakhir, dan perlu meyakinkan apakah setiap simbol sudah terkirim dengan benar.
Secara gampangannya, digital itu adalah 0 dan 1, atau logika biner, atau diskrit, sedang analog adalah continous. Digital bisa dilihat sebagai analog yang dicuplik/di sampling, kalau samplingnya semakin sering atau deltanya makin kecil, katakan mendekati nol, maka sinyal digital bisa terlihat menjadi analog kembali. Menghitung sinyal digital lebih gampang karena diskrit, sedang analog anda harus menggunakan diferensial integral.
cara bodone (paling bodo) nek analog bentuk gelombange sinus (ujungnya tumpul gitulah), digital itu bentuk gelombangnya Kotak.
Kalau alat2 yg digital, itu yang dibuat dan bekerja didasarkan pada prinsip digital, ini lebih gampang dari analog, tapi sekarang ini analog menjadi trend lagi, karena digital dengan clock yg makin kecil Gega Herzt atau lebih, perilakunya sudah menjadi seperti rangkaian analog, jadi diperlukan ahli-ahli rangkaian analog. kalau untuk telekomunikasi, mau tidak mau masih melibatkan analog, karena harus menggunakan sinyal pembawa (carrier), komunikasi digitalpun hanya datanya yg didigitalkan (data digital (0-1) dimodulasi dengan carrier sinyal analog) di akhirnya harus diubah lagi jadi analog. Kalau contoh komponen yg bekerja dengan prinsip analog : Transistor, Tabung TV, IC-IC TTL, IC Catu daya. Digital : IC logika, microcontroller, FPGA. Rangkaian analog adalah kebutuhan dasar yang tak tergantikan di banyak sistem yang kompleks, dan menuntut kinerja yang tinggi.
Coba kita lihat sedikit aplikasi dimana analog sulit atau bahkan mustahil untuk digantikan.
1.    Pemrosesan Sinyal dari Alam secara alamiah, sinyal yang dihasilkan alam itu adalah berbentuk analog. misalnya sinyal suara dari mikrofon, seismograph dsb walaupun kemudian bisa diproses dalam domain digital, sehingga banyak alat yang mempunyai bagian ADC dan DAC. nah pembuatan ADC dan DAC dengan presisi dan kecepatan tinggi, konsumsi daya rendah itu sangat sulit, ini memerlukan orang-orang analog.
2.    Komunikasi Digital Untuk mengirim sinyal melalui kabel yang panjang biasanya juga harus diubah dulu menjadi sinyal analog, memerlukan juga perancangan ADC dan DAC.
Data storage –> binari (Digital) dibaca oleh “magnetic head” –> ANALOG (small, few milli Volt, high noise) disini sinyal perlu di “amplified, filtered, and digitized”
3.    Disk Drive Electronics Penerima nir-kabel (wireless) Sinyal yang diambil/diterima oleh antenna penerima RF adalah ANALOG (few milli volt, high noise)
4.    Penerima Optis mengirim data kecepatan tinggi melalui jalur fiber optic yang panjang data harus diubah menjadi bentuk cahaya (light) = ANALOG perlu perancangan rangkaian kecepatan tinggi, dan pita lebar (broad band) oleh orang analog. (saat ini kecepatan receiver 10-40Gb/s)
5.    Sensor Video Camera –> citra/image diubah menjadi arus mengunakan larik fotodioda
sistem ultrasonik –> menggunakan sensor akustik untuk menghasilkan tegangan yang proporsional dengan amplitudeaccelerometer –> mengaktifkan kantong udara ketika kendaraan menabrak sesuatu, maka perubahan kecepatan diukur sebagai akselerasi
itu adalah kerjaan Analog
6.    Mikroprosesor & Memory walaupun sesungguhnya DIGITAL, tapi pada kecepatan tinggi (high speed digital design), perilakunya mirip analog –> dilihat sebagai sinyal analog –> perlu pengertian tentang sistem Analog
kenapa analog lebih sulit dari digital?
1. digital hanya mempertimbangkan speed, power dissipation analog harus memepertimbangkan speed, power dissipation, gain, precission, supply voltage dsb
2. Analog lebih sensitif terhadap derau/noise, crosstalk dan interferensi (kecepatan & presisi).
3. jarang yang bisa diotomatisasi dalam perancangan seperti digital yang bisa di Lay out dan sintesis secara otomatis.
4. Modelling & Simulation untuk analog memerlukan pengalaman karena banyak efek dan perilaku yang “aneh”
5. Teknologi sekarang banyak digunakan dan dirancang untuk memproduksi produk digital, karena itu sulit kalau mau memproduksi yang analog.
Dalam konteks komputer (mesin komputer) maka analog dan digital dalam penerapannya yaitu:
- Analog Computer
Digunakan untuk data yang sifatnya kontinyu dan bukan data yang berbentuk angka, tetapi dalam bentuk fisik,seperti misalnya arus listrik,temperatur,kecepatan,tekanan,dll
- Digital Computer
Digunakan untuk data berbentuk angka atau huruf
Keunggulan :
– Memproses data lebih tepat dibandingkan dengan komputer analog
– Dapat menyimpan data selama masih dibutuhkan oleh proses
– Dapat melakukan operasi logika
– Data yang telah dimasukkan dapat dikoreksi atau dihapus– Output dari komputer digital dapat berupa angka, huruf,grafik maupun gambar
- Hybrid ComputerKombinasi komputer analog dan digital.
http://ourn0tes.files.wordpress.com/2010/03/analog_digital_clock.jpg?w=300&h=160
ISTILAH digital yang selalu kamu dengar sehari-hari itu berarti apa sih? Mulai dari jam digital, apa bedanya dengan jam analog ? Apakah pesawat telpon kamu yang sudah memiliki tombol-tomol angka berarti sudah digital? (bandingkan dengan pesawat telp yang menggunakan ”piringan dial” apakah itu diesbut Analog? Lantas bagaimana dengan album musik kamu yang masih berupa pita kaset atau keping disk? Apakah termasuk kategori analog atau digital juga ? Atau bagaimana juga dengan kamera film (selulosa) dan juga kamera ”digital” kamu?
Analog berarti kuno dan digital berarti moderen, analog murah, digital mahal, atau analog berarti tidak seperti digital yang identik dengan angka-angka. Begitulah anggapan ”awam” tentang analog dan digital. Coba saja kamu lihat istilah jam analog dan jam digital, perbedaannya adalah yang menggunakan ”jarum” adalah analog, dan yang berupa ”display” angka-angka adalah digital.
Analog dan digital sebenarnya lebih kepada istilah dalam penyimpanan
http://ourn0tes.files.wordpress.com/2010/03/ana_digital.gif?w=468
dan penyebaran data. Data Analog disebarluaskan melalui gelombang elekromagnetik (gelombang radio) secara terus menerus, yang banyak dipengaruhi oleh faktor ”pengganggu”, sementara data digital adalah merubah data menjadi sederhana yaitu ”hanya” terdiri dari ”0” dan ”1”, yang akan lebih mudah untuk di sebarkan secara mudah tanpa terjadi ”gangguan”.
http://ourn0tes.files.wordpress.com/2010/03/350__1_mdr-175_large-jpg.png?w=300&h=300
Pemahaman yang mudah tentang analog dan digital adalah pada pita kaset lagu dan file MP3 kamu. Jika kamu meng-copy (menyalin) atau merekam pita kaset, tentu hasilnya banyak ditentukan oleh alat perekamnya, kebersihan ”head” rekam nya, dan sebagainya, semakin banyak kamu merekam ke tempat lain, kualitas suaranya akan berubah. Tapi dengan meng-copy file MP3, kamu akan mendapat salinannya sama persis dengan aslinya, berapapun banyaknya kamu menggandakannya.Kini ada juga yang menyalin lagu-lagu dari pita kaset menjadi file, atau disebut juga “men-digital-isasi” Namun dalam bidang audio ini, sistem analog masih memiliki beberapa ”keunggulan” dibanding sistem digital, yang menyebabkan masih ada beberapa penggemar fanatik yang lebih menyukai rekaman analog.
Perbedaan kamera analog (manual) dan kamera digital hanya terletak pada media penyimpanannya, kalau kamera sebelumnya ”menyimpan” data gambar dalam bentuk filem yang harus kamu proses dulu untuk bisa mendapatkan ”foto” nya, sementara kamrea digital menyimpan data gambarnya dalam bentuk data ”digital” yang bisa langsung kamu nikmati sesaat setelah ”dijepret” Dalam bidang telekomunikasi, perbedaan telepon analog dan digital,
http://ourn0tes.files.wordpress.com/2010/03/tv.jpg?w=300&h=173
bukan berdasarkan jenis pesawat teleponnya, namun kepada ”sistem” di sentral teleponnya, walaupun untuk mendukung sistem sentra yang digital, diperlukan pesawat telepon khusus. Begitu juga dengan siaran televisi analog dan digital. Siaran Analog kadang terganggu oleh cuaca, letak bangunan, dan penyebab lainnya, sementara siaran digital memiliki kualitas suara dan gambar yang lebih bagus, karena ”data”-nya tidak mengalami ”gangguan” saat dikirim ke TV penerima.
Kesimpulan : system digital merupakan perkembangan dari teknologi digital. Sistem analog, terdapat amplifier di sepanjang jalur transmisi. sedangakan Sistem digital merupakan bentuk sampling dari sytem analog. digital pada dasarnya di code-kan dalam bentuk biner (atau Hexa). Analog dan digital sebenarnya lebih kepada istilah dalam penyimpanan dan penyebaran data. Data Analog disebarluaskan melalui gelombang elekromagnetik (gelombang radio) secara terus menerus, yang banyak dipengaruhi oleh faktor ”pengganggu”, sementara data digital adalah merubah data menjadi sederhana yaitu ”hanya” terdiri dari ”0” dan ”1”, yang akan lebih mudah untuk di sebarkan secara mudah tanpa terjadi ”gangguan”.
http://htmlimg4.scribdassets.com/7xhbj2gcu81wtbje/images/1-0725da5ed2.png


: (a) Bentuk Gelombang Analog; (b) Bentuk GelombangDigital; (c) Jam Analog; (d) Jam Digital

Perbedaan Sistem Digital Dan Sistem Analog


      Sistem dapat didefinisikan sebagai suatu himpunan benda atau bagian-bagian yang bekerja bersama-sama atau terhubung sedemikian rupa sehingga membentuk suatu keseluruhan.
Sistem digital adalah susunan peralatan yang dirancang untuk mengolah besaran fisik yang diwakili oleh besaran digital, yaitu oleh nilai diskrit.

Peralatan itu pada saat ini umumnya merupakan peralatan elektronika. Meskipun dapat juga merupakan peralatan mekanik atau pneumatic. Sistem digital yang umum dijumpai antara lain adalah computer, kalkulator, dan jam digital.Sistem analog meliputi peralatan yang mengolah besaran fisik yang diwakili dalam bentuk analog. Dalam system analog besaran itu beragam dalam nilai yang sinambung. Sebagai contoh amplitudo sinyal keluaran pengeras suara dalam pesawat penerima radio dapat memiliki nilai yang sinambung dari nol sampai ke nilai maximum yang mampu ditahannya.

Pada saat ini, khususnya dalam bidang elektronika, penggunaan teknik digital telah banyak menggantikan kerja yang sebelumnya menggunakan teknik analog. Alasan utama terjadinya pergeseran menuju teknologi digital itu adalah sebagai berikut:
1.    Sistem digital lebih mudah dirancang. Hal itu terjadi karena hal yang diggunakan adalah rangkaian pengalih yanhg tidak memerlukan nilai tegangan atau arus yang pasti, hanya rentangan(tinggi atau rendah) yang diperlukan.
2.    Penyimpanan informasi mudah dilakukan. Penyimpanan informasi itu dapat dilakukan oleh rangkaian pengalih khusus yang dapat menyesuaikan informasi tersebut dan menahannya selama diperlukan.
3.    Ketepatan dan ketelitiannya lebih tinggi. Sisttem digital ndapat menangani ketelitian sebanyak angka yang diperlukan hanya dengan menambahkan rangkaian penganlih saja. Dalam system analog, ketelitian biasanya terbatas hanya sampai tiga atau empat angka saja karena nilai tegangan dan arus didalamnya bergantung langsung pada kepada nilai komponen rangkaiannya.
4.    Operasinya dapat dengan mudah diprogrankan. Sangat mudah untuk merancang suatu sisrem digital yang kerjanya dikendalikan oleh program. Sistem analog juga dapat diprogram tetapi ragam dan kerumitan operasinya sangat terbatas.
5.     Sistem digital lebih kebal terhadap noise. Perubahan tegangan yang tidak teratur  tidak terlalu mengganggu seperti halnya dalam system analog. Dalam system digital nilai pasti untuk tegangan tidak penting sepanjang noise itu tidak sebesar sinyal tinggi atau sinyal rendah yang telah ditetapkan.
6.    Lebih banyak rangkaian digital yang dapat dibuat dalam bentuk chip rangkaian terpadu. Meskipun rangkaian analog juga dapat dibuat dalam bentuk IC, kerumitannya membuat system analog itu lebih mahal dalam bentuk IC.
Satu-satunya kekurangan rangkaian digital adalah karena dunia nyata sesungguhnya adalah system analog. Hampir semua besaran fisik di dunia inibersifat analog dan besaran itulah yang merupakan masukan dan keluaran yang dapat dipantau, yang dolah dan dikendalikan oleh system. Contohnya adalah suhu, tekanan, letak, dll.
Pada saat ini semakin banyak penggunaan teknik analog dan digital dalam suatu system untuk memanfaatkan keunggulan masing-masing. Tahapan terpenting adalah menentukan bagian mana yang menggunakan teknik analog danbagian mana yanhg menggunakan teknik digital. Dan dapat diramalkan di masa depan bahwa teknik digital akan menjadi lebih murah dan berkualitas.
Contoh Sistem Digital:
1.      Jam digital
2.      Kamera digital
3.      Penunjuk suhu digital
4.      Kalkulator digital
5.      Computer
6.      HP
7.      Radio digital


Contoh Sistem Analog:
1.      Remote TV
2.      Spedometer pada motor
3.      Pengukur tekanan
4.      Telepon
5.      Radio analog

Kelemahan Dan Keungulan Sistem Analog,Digital,
  
Kelebihan Sinyal Analog

Sistem analog masih memiliki beberapa ”keunggulan”, yang menyebabkan masih ada beberapa penggemar fanatik yang lebih menyukai sistem analog. Pada sistem analog, terdapat amplifier di sepanjang jalur transmisi. Setiap amplifier menghasilkan penguatan (gain), baik menguatkan sinyal pesan maupun noise tambahan yang menyertai di sepanjang jalur transmisi tersebut

Beberapa alasan bahwa sistem analog sulit bahkan mustahil untuk digantikan adalah :
  
1.        Pemrosesan Sinyal dari Alam secara alamiah, sinyal yang dihasilkan alam itu adalah berbentuk analog.   misalnya sinyal suara dari mikrofon, seismograph dsb walaupun kemudian bisa diproses dalam domain digital, sehingga banyak alat yang mempunyai bagian ADC dan DAC. nah pembuatan ADC dan DAC dengan presisi dan kecepatan tinggi, konsumsi daya rendah itu sangat sulit, ini memerlukan orang-orang analog.
2.        Komunikasi Digital Untuk mengirim sinyal melalui kabel yang panjang biasanya juga harus diubah dulu menjadi sinyal analog, memerlukan juga perancangan ADC danDAC.
3.        Disk Drive Electronics Data storage–> binari (Digital) dibaca oleh “magnetic head” –> ANALOG (small, few milli Volt, high noise) disini sinyal perlu di    “amplified, filtered, and digitized”.Penerima nir-kabel (wireless) Sinyal yang diambil/diterima oleh antenna penerima RF adalah ANALOG (few milli volt, high noise)
4.         Penerima Optis mengirim data kecepatan tinggi melalui jalur fiber optic yang panjang data harus diubah menjadi bentuk cahaya (light) = ANALOG perlu perancangan rangkaian kecepatan tinggi, dan pita lebar (broad band) oleh orang analog. (saat ini kecepatan receiver 10-40Gb/s)
5.        Sensor Video Camera –> citra/image diubah menjadi arus mengunakan larik fotodioda sistem ultrasonik –> menggunakan sensor akustik untuk menghasilkan tegangan yang proporsional dengan amplitudo accelerometer –> mengaktifkan kantong udara ketika kendaraan menabrak sesuatu, maka perubahan kecepatan diukur sebagai akselerasi itu adalah kerjaan Analog
6.        Mikroprosesor & Memory walaupun sesungguhnya DIGITAL, tapi pada kecepatan tinggi (high speed digital design), perilakunya mirip analog –> dilihat sebagai sinyal analog


Kelemahan Sistem Analog

 Perlu pengertian tentang sistem Analog mengapa analog lebih sulit dari sistem digital, yakni :
1.    digital hanya mempertimbangkan speed, power dissipation analog harus memepertimbangkan speed, power dissipation, gain, precission, supply voltage dsb
2.     Analog lebih sensitif terhadap derau/noise, crosstalk dan interferensi (kecepatan & presisi)
3.    jarang yang bisa diotomatisasi dalam perancangan seperti digital yang bisa di Lay out dan sintesis secara otomatis.
4.    Modelling & Simulation untuk analog memerlukan pengalaman karena banyak efek dan perilaku yang “aneh”
5.    Teknologi sekarang banyak digunakan dan dirancang untuk memproduksi produk digital, karena sulit kalau mau memproduksi yang analog.
Beberapa keunggulan dari sistem digital adalah :

1.   Teknologi digital menawarkan biaya lebih rendah, keandalan (reability) lebih baik, pemakain ruang yang lebih kecil dan konsumsi daya yang lebih rendah
2. Teknologi digital membuat kualitas komunikasi tidak tergantung pada jarak
3. Teknologi digital lebih bergantung pada noise
4. Jaringan digital ideal untuk komunikasi data yang semakin berkembang
5. Teknologi digital memungkinkan pengenalan layanan-layanan baru
6. Teknologi digital menyediakan kapasitastransmisi yang besar
7. teknologi digital menawarkan fleksibilitas Keuntungan lain dari sistem digital yang pertma ialah amplifier digantikan regenerative repeater.

”Fungsi repeater selain menguatkan sinyal, juga “membersihkan” sinyal tersebut dari noise. Pada sinyal “unipolar baseband”, sinyal input hanya mempunyai dua nilai –0 atau 1. Jadi repeater harus memutuskan, mana dari kedua kemungkinan tersebut yang boleh ditampilkan pada interval waktu tertentu, untuk menjadi nilai sesungguhnya di sisi terima. Keuntungan kedua dari sistem komunikasi digital adalah bahwa kita berhubungan dengan nilai-nilai, bukan dengan bentuk gelombang. Nilai-nilai bisa dimanipulasi dengan rangkaian rangkaian logika, atau jika perlu, dengan mikroprosesor. Operasi-operasi matematika yang rumit bisa secara mudah ditampilkan untuk mendapatkan fungsi-fungsi pemrosesan sinyal atau keamanan dalam transmisi sinyal”.

Kerugian Sistem Digital

Sistem digital juga mempunyai beberapa kerugian dibandingkan dengan sistem analog, bahwa sistem digital memerlukan bandwidth yang besar. Sebagai contoh, sebuah kanal suara tunggal dapat ditransmisikan menggunakan single - sideband AM dengan bandwidth yang kurang dari 5 kHz. Dengan menggunakan sistem digital, untuk mentransmisikan sinyal yang sama, diperlukan bandwidth hingga empat kali dari sistem analog. Kerugian yang lain adalah selalu harus tersedia sinkronisasi. Ini penting bagi sistem untuk mengetahui kapan setiap simbol yang terkirim mulai dan kapan berakhir, dan perlu meyakinkan apakah setiap simbol sudah terkirim dengan benar.

Sejarah Dan Latar Belakang Sistem Analog dan Digital

Bentuk komunikasi antar makhluk hidup yang paling awal adalah suara,yang dibangkitkan oleh mulut, dan diterima oleh telinga. Apabila jarak antar makhluk yang berkomunikasi tersebut jauh, diperlukan alat bantu berupa sesuatuyang dapat dilihat. Sebagai contoh, pada abad ke dua sebelum Masehi, orangYunani menggunakan sinyal obor untuk berkomunikasi. Kombinasi dan posisiyang berbeda dari obor tersebut menghasilkan kombinasi huruf -huruf Yunani.Bentuk komunikasi menggunakan obor ini merupakan bentuk awal dari sistimkomunikasi data. Suara drum, juga dapat digunakan untuk berkomunikasi dalam jarak jauh.Pada abad ke delapan belas, mulai diperkenalkan bendera semaphoreuntuk menyampaikan komunikasi. Bendera semaphore ini prinsipnya samadengan nyala obor pada jaman Yunani, yang mengandalkan kemampuanpenglihatan. Setiap kombinasi dari bendera semaphore yang dikibarkanmenghasilkan kombinasi huruf -huruf Latin. Pemakaian bendera semaphore initerhalang kendala jarak, dimana semakin jauh jarak antar orang yangberkomunikasi, semakin tidak efisien pemakaian bendera ini.Pada tahun 1753, Charles Morrison, seorang penemu dari Scotlandia,memperkenalkan sistem transmisi listrik menggunakan satu kabel (plus ground)untuk masing-masing huruf. Pada system ini diperlukan sebuah pithball dankertas di sisi terima untuk mencetak hasilnya.Pada tahun 1835, Samuel Morse memulai bereksperimen dengantelegraph, seperti yang kita kenal sekarang. Dua tahun kemudian, pada 1837,telegraph mulai dikenalkan oleh Morse di USA, dan oleh Sir Charles Wheatstonedi Inggris. Telegraph pertama kali dipublikasikan pada tahun 1844, dan mulailahmasa komunikasi listrik yang kelak akan menguasai kehidupan manusia.Skema komunikasi yang dibicarakan di atas dapat dikatakan “
digital” 
secara alamiah. Dikatakan demikian karena hanya ada sejumlah pesan terbatasyang digunakan. Tidak demikian halnya setelah Alexander Graham Bellmemperkenalkan telepon pada tahun 1876. Telepon merupakan sistimkomunikasianalog. Pesan yang disampaikan dapat tidak terbatas, karena
langsung diucapkan dari mulut manusia. Setelah penemuan ini, sistim analogmulai menggantikan sistem “digital” yang telah ada. Bahkan Western UnionTelegraph Company, perusahaan yang tadinya bergerak di bidang telegraph,mulai beralih ke bisnis telepon.Dibutuhkan waktu beberapa abad lamanya, sebelum teknologi berbalikarah, yaitu sistem digital menggantikan sistem analog. Sejak tahun 1976, sistemkomunikasi digital secara perlahan mulai menggantikan dominasi sistemkomunikasi analog. Pergantian sistem ini berlangsung cukup pesat sejakditemukannya komputer dan piranti elektronik solid state.Aplikasi komersial digital dimulai pada tahun 1962, saat Bell Systemmemperkenalkan sistem transmisi TI, yang menandai awal kebangkitan revolusidigital komersial. Di akhir tahun ini, sekitar 250 rangkaian komunikasi digital telahdi-instal. Pada pertengahan tahun 1976, angka ini melonjak mencapai 3 juta.Suatu perkembangan yang cukup fantastis !Pada pertengahan 1980 an, ketika sistem komputer merayakan 40tahun keberadaannya, sementara teknologi solid state masih cukup muda, jaringan digital dengan kontrol komputer telah dikomersialkan. Masyarakatinformasi telah mencapai level kematangan dalam fase kehidupannya. Akseskomunikasi instan, baik dari mobil, pesawat udara, atau dari gelanggang olahraga sekalipun, akan menjadi suatu kenyataan.Dibutuhkan waktu 20 abad lamanya untuk berpindah dari sistim nyalaobor ke sistem komunikasi sinyal listrik, untuk mengkomunikasikan data yangsama. Dibutuhkan waktu 20 tahun untuk berpindah dari sistem transmisi datalistrik primitif ke sistem komunikasi data lanjutan berkecepatan tinggi. Dan hinggasaat ini, perkembangan teknologi masih belum berakhir.

Rabu, 19 Februari 2014

Rumus Elektro Dasar



RESISTOR 
Resistor adalah komponen elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena dia berfungsi sebagai pengatur arus listrik. Dengan resistor listrik dapat didistribusikan sesuai dengan kebutuhan. Tentunya anda bertanya-tanya, apa itu resistor ?, seperti apa bentuknya ?, bagaimana cara kerjanya ?, oops..., nanti dulu saya baru akan menjelaskannya.

Ilustrasi Arus Air untuk mengetahui cara kerja Resistor
Setelah anda perhatikan animasi tadi, tentunya anda sudah mempunyai gambaran tentang bagaimana prinsip kerja dari sebuah resistor. Yah anda anggap saja arus air yang ada di animasi itu sebagai arus listrik, sedangkan bendungan sebagai resistornya. Jadi bila bendungan 1 kita anggap sebagai resistor 1 dan bendungan 2 sebagai resistor 2, maka besarnya arus tergantung dari besar kecilnya pintu bendungan yang kita buka. Semakin besar kita membuka pintu bendungan semakin besar juga arus yang melewati bendungan tersebut bila ingin lebih besar lagi arusnya, yah tidak usah dipasang bendungannya atau dibiarkan saja, jadi bila kita menginginkan arus yang besar maka kita pasang resistor yang nilai resistansi ( tahanan ) nya kecil, mendekati nol atau sama dengan nol atau tidak dipasang sama sekali dengan demikian arus tidak lagi dibatasi. Nah seperti itulah kira-kira fungsi Resistor dalam sebuah rangkaian elektronika.
Suatu fungsi dalam dunia teknik tentunya mempunyai satuan atau besaran, misalnya untuk berat kita tahu bahwa pada umumnya satuannya adalah "gram", satuan jarak pada umumnya orang memakai satuan " meter ". Nah untuk resistor satuannya adalah OHM, jadi mulai sekarang kita biasakan untuk menyebut besarnya nilai suatu resistor atau tahanan kita gunakan satuan OHM, yang sebenarnya berasal dari kata OMEGA. Maka tidaklah heran bila lambang dari OHM berbentuk seperti tapal kuda orang yunani menyebutnya omega entah kenapa demikian saya juga kurang paham karena saya bukan ahli sejarah he he he . Ok, jadi bila nanti anda melihat rangkaian elektronika lalu disitu tertulis misalnya 470 maka itu adalah sebuah resistor dengan nilai 470 OHM.., paham..!!.
Didalam rangkaian elektronika resistor dilambangkan dengan angka " R " , sedangkan icon nya seperti ini : . Ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metal Film. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer dan Trimpot. Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR ( Light Dependent Resistor ) dan Resistor yang yang nilai resistansinya berubah tergantung dari suhu disekitarnya namanya NTC ( Negative Thermal Resistance ) agar lebih jelas coba anda perhatikan gambar 1-a, dan animasi berikut ini :

Prinsip Dasar, Cara Kerja Sebuah LDR

Berbagai Jenis type dan bentuk Resistor
Potensiometer
L D R
N T C
Trimpot
Lambang-lambang dari beberapa Jenis Resistor
Hmmm..., bagaimana friend !. Saya rasa sampai disini anda sudah memahami prinsip kerja dari resisor. Sekarang mari kita lanjutkan dengan materi yang lain.
Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi ( tahanan ) dari resistor. Kode-kode warna itu melambangkan angka ke-1, angka ke-2, angka perkalian dengan 10 ( multiflier ), nilai toleransi kesalahan, dan nilai qualitas dari resistor. Kode warna itu antara lain Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Ungu, Abu-abu, Putih, Emas dan Perak. ( lihat gambar 1-b dan tabel 1 ). Warna hitam untuk angka 0, coklat untuk angka 1, merah untuk angka 2, orange untuk angka 3, kuning untuk angka 4, hijau untuk angka 5, biru untuk angka 6, ungu untuk angka 7, abu-abu untuk angka 8, dan putih untuk angka 9. Sedangkan warna emas dan perak biasanya untuk menunjukan nilai toleransi yaitu emas nilai toleransinya 10 %, sedangkan perak nilai toleransinya 5 %.
Wah banyak sekali sulit untuk menghafalnya..!, hmmm.., kalau anda merasa kesulitan menghafal kode warna dari resistor beserta nilainya, coba perhatikan teks yang saya beri huruf tebal diatas. Kalau disatukan akan menjadi sebuah kata yang mungkin mudah bagi anda untuk menhafalnya ( Hi Co Me O Ku Hi B U A P == 0 1 2 3 4 5 6 7 8 9 ). Ok sekali lagi coba anda lihat gambar 1-b dan tabel 1

KODE WARNA
APPLET WARNA
NILAI
TOLERANSI
Hitam

0
-----
Coklat

1
-----
Merah

2
-----
Orange

3
-----
Kuning

4
-----
Hijau

5
-----
Biru

6
-----
Ungu

7
-----
Abu-abu

8
-----
Putih

9
-----
Emas

0,1
10 %
Perak

0,01
1 %
Nah sekarang mari kita mencoba membaca nilai suatu resistor. Misalkan anda melihat sebuah resistor dengan kode warna sebagai berikut : Coklat, merah, merah, dan emas. Berapa nilai resistansi dari resistor tersebut..?. ( Perlu diingat..! : Untuk membaca angka pertama dari kode warna resistor anda harus melihat warna yang paling dekat dengan ujung sebuah resistor dan biasanya untuk angka ke-1,2 dan 3 saling berdekatan sedangkan untuk kode warna dari toleransi agak jauh dari warna-warna yang lain, sekali lagi lihat gambar 1-b dan tabel 1
Untuk membaca kode warna resistor seperti yang dipermasalahkan diatas, kita mulai menerjemahkan satu persatu kode tersebut. Warna pertama Coklat, berarti angka 1, warna kedua warna merah, berarti angka 2, warna ketiga warna merah berarti multiflier, perkalian dengan 10 pangkat 2. kalau diterjemahkan 12 X 10 2 = 12 X 100 = 1200. Berarti 1200 Ohm. dengan nilai toleransi sebesar 10 %. Akurasi dari resistor tersebut berarti 1200 X ( 10 : 100 ) = 1200 X ( 1 : 10 ) = 120. ( he he he, itulah ilmu exacta selalu berhubungan dengan matematika yupsss, padahal saya juga pusing nih ngitung-ngitung yang ginian, ha ha ha.. selingan aja ) jadi nilai sebenarnya dari resistor tersebut adalah maximum 1200 + 120 = 1320 Ohm, sedangkan nilai minimum nya adalah 1200 - 120 = 1080 Ohm. Kenapa demikian ...?. Karena karakteristik dari bahan baku resistor tidak sama, walaupun pabrik sudah mengusahakan agar dapat menjadi standart tetapi apa daya prosesnya menjadi tidak standart. Untuk itulah pabrik menyantumkan nilai toleransi dari sebuah resistor agar para designer dapat memperkirakan seberapa besar faktor x yang harus mereka fikirkan agar menghasilkan yang mereka kehendaki.
Sekarang coba saya kasih soal lalu anda cari nilai nya sendiri, ( buat PR . he he he..., kayak anak SD aja ). Soalnya begini : Didalam sebuah rangkaian saya melihat sebuah resistor jenis carbon dengan warna-warna sebagai berikut ; Merah, Kuning, Hijau dan Perak. Berapa nilai minimum dari resistor tersebut ?.
Di dalam praktek para designer sering kali membutuhkan sebuah resistor dengan nilai tertentu. Akan tetapi nilai resistor tersebut tidak ada di toko penjual, bahkan pabrik sendiri tidak memproduksinya. Lalu bagaimana solusinya..?. Nah...!, seperti yang pernah saya singgung diatas bahwa ilmu exacta selalu berhubungan dengan matematika, maka untuk mendapatkan suatu nilai resistor dengan resistansi yang unik dapat dilakukan dua cara ; Pertama cara SERIAL, dan yang kedua cara PARALEL. ( Wah.., nambah pusing lagi nih..! ). Dengan cara demikian maka masalah designer diatas dapat terpecahkan. Bagaimana cara Serial dan bagaimana pula cara Paralel, untuk lebih jelasnya coba anda perhatikan gambar 1-d.


Cara memasang Resistor cara Serial dan Paralel
Dengan Cara tersebut suatu nilai resistor dapat menjadi unik. Lalu bagaimana menghitungnya ?, Ehmm. mudah saja, untuk cara serial anda tinggal menambahkan saja nilai resistor 1 dan nilai resistor 2. ( R1 + R2 ) . Sedangkan untuk cara paralel anda dituntut untuk mengerti ALJABAR ( wah-wah lagi-lagi matematika ) tapi mudah kok. Kalau ingin mahir Matematika buka saja topik yang membahas khusus tentang matematika di situs ini juga. Ok kembali ke permasalahan. Untuk cara paralel ditentukan rumus sebagai berikut : misalkan kita memparalel dua buah resistor, resistor pertama diberi nama R1 dan resistor kedua diberi nama R2, maka rumusnya adalah : 1/R= ( 1/R1 ) + ( 1/R2 )
Contoh : Kita mempunyai dua buah resistor dengan nilai berikut R1=1000 Ohm , R2=2000 Ohm, bila kita menggunakan cara serial maka didapat hasil R1+R2 1000+2000 = 3000 Ohm, sedangkan bila kita menggunakan cara Paralel maka didapat hasil :
1 / R = 1 / R1 + 1 / R2
       1 / R = (1/1000) + (1/2000)
       1 / R = (2000 + 1000) / (1000 X 2000) 
       1 / R = (3000) / (2000000)
       1 / R = 3 / 2000
          3R = 2000
           R = 2000 / 3
           R = 666,7 Ohm -----> Resistor Hasil Paralel.
silahkan buktikan sendiri dengan persamaan aljabar dalam matematika.



KOMPONEN DASAR ELEKTRONIKA (kapasitor)

2. Kapasitor
Kapasitor atau kondensor adalah komponen elektronika yang dapat menyimpan energi listrik dalam bentuk muatan listrik selama selang waktu tertentu tanpa disertai adanya reaksi kimia.
Kapasitor banyak digunakan pada peralatan elektronika seperti pada lampu kilat kamera, cadangan energi pada komputer saat listrik mati, pelindung sistem RAM pada komputer dll.
Pada dasarnya, kapasitor terdiri atas sepasang pelat konduktor sejajar dengan luas A yang dipisahkan oleh jarak d yang kecil. Dua konduktor tersebut dipisahkan oleh suatu bahan isolator yang disebut bahan dielektrik.
Saat kapasitor diberi tegangan, kapsitor akan menjadi bermuatan. Satu pelat menjadi bermuatan positif dan pelat yang lainnya bermuatan negatif. Jumlah masing-masing muatan pada kedua pelat tersebut sama. Jumlah muatan Q yang terdapat pada muatan sebanding dengan beda potensial V sesuai dengan persamaan : Q= CV. Dengan C menunjukkan kapasitansi kapasitor. Kapasitansi kapasitor adalah kemampuan kapasitor untuk menyimpan energi listrik.
Kapasitansi tidak bergantung pada Q dan V. Nilainya hanya bergantung pada struktur dan dimensi kapasitor sendiri. Jadi C dapat ditulis dalam persamaan C=permitivitas hampa udara dikalikan A/d.

2. Jenis-jenis kapasitor
Berdasarkan bahan dielektrik dan penggunaannya, kapasitor dibagi menjadi beberapa jenis seperti berikut.
a. Kapasitor variabel (Varco)
Kapasitor ini digunakan untuk tuning pesawat radio atau mencari gelombang radio. Kapasitor ini menggunakan udara sebagai bahan dielektriknya. Kapasitor jenis ini menggunakan pelat yang tidak dapat digerakkan (stator) dan pelat yang dapat digunakan (rotor). Varco biasanya terbuat dari bahan aluminium. Dengan memutar tombol, luas pelat yang berhadapan dapat diataur sehingga kapasitas kapasitor dapat diubah. Dengan mengubah kapasitas kapasitor, frekuensi sirkuit yang dicari dapat distel. Berikut ditunjukkan suatu varco.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjSfhQUtWarsEoYvv-W9dPyHkNF2uUFYEyBUsVtxqAvfCeptitFD7qNjVaD8ffdHZuulT4FqnQ-Fbx3GZsa7LhNB3Z9Fkgpor_lXRzkKSyhYiNXsMJCV4dM2_0nD_kOS67JEbG0lltH880/s320/Varco.jpgb. Kapasitor keramik
Kapasitor keramik mempunyai dielektrik yang terbuat dari keramik. Kapasitor ini memiliki elektroda logam dan dielektritnya terdiri atas campuran titanium oksida dan oksida lain. Kekuatan dielektriknya baik sekali sehingga mempunyai kapasitas yang besar. Meskipun demikian, ukuran kapasitor keramik relatif kecil. Kapasitor keramik digunaka untuk meredam bunga api, seperti pada bunga api yang timbul pada platina kendaraan bermotor.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgOBIvOfmQFpEsVexNPU_vKm9dUViAMExiBSib8-m2V1HkUjH7NKiR9yI02UR4vMZn3hMszkpSWQUAzOAd86E3b4d822oulYfKBj8yqKcHXlCbruxTxLTZidwqB7EfiDYXWCD0LeeB0zZI/s320/High_Voltage_Ceramic_Capacitor.jpgc. Kapasitor kertas
Kapasitor ini mempunyai dielektrik yang terbuat dari kertas. Kapasitor kertas mempunyai lapisan-lapisan kertas setebal 0,05-0,02 mm di antara dua lembaran kertas aluminium. Kertas tersebut diresapi dengan minyak untuk memperbesar kapasitas dan kekuatan dielektriknya.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj3OKnifrzJYVQApdEjsFmRwMLBZfdZXz_9UjDeN0u81B8g32Ngh_r2hv8ptVrjNz-kuXkQwbS2XTaATryMFXvyYrb9GPh1sd-puQoEDjxKk5DFlfwWoLkok6xZzPNJDoQnxT95pMTviOI/s320/papaer.jpgd. Kapasitor plastik
Kapasitor plastik mempunyai selaput plastik sebagai dielektriknya. Kapasitor ini mempunyai elektroda logam dan lapisan dielektrik yang terbuat dari bahan polisterina, milar atau teflon dengan tebal 0,0064 mm. Kapasitor plastik digunakan untuk koreksi faktor daya dalam sisitem daya listrik pada fisi nuklir, pembentukan logam hidrolik, penyelidikan plasma dielektrik.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEinn9_vaivpFbUHvKrCc9StOVJqLj-6iVtLqCPjNieK80nGNgTAZctN2_EQoJRFOtCB5TUbbUSuGMcjzcTXt0A2GhOKeOE2S77ikVPviWW39FjOsaP6Ak9bv-oF1P-uS7hMwBDvPTtA9jo/s320/cap4s.jpge. Kapasitor elektrolit (Elco)
Kapasitor elektrolit mempunyai dielektrik berupa oksida aluminium. Elektroda positif terbuat dari bahan logam, seperti aluminium dan tantalum, sedangkan elektroda negatif terbuat dari bahan elektrolit. Bahan dielektrik digunakan untuk melapisi elektroda negatif. Tebal lapisan oksida sekitar 0,0001 mm. Kapasitor ini hanya digunakan pada tegangan DC yang berdenyut pada rangkaian radio, televisi, telefon, telegraf, peluru kendali, dan perlengkapan komputer. Fungsi elco adalah sebagai perata denyut arus listrik.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgBucXFgNvkoSqE8txV-xjQe6uIg46SOx3ZcsnSiNm3oQ3ZcXTq3A9PIFcccLAjkPS_PbouWfbfb6vK8cpUY3YG8eOPIH7BNcKA9J_HKqDU8K4eAyAE09G_NA7rmBpZs0aGPX2nVLLMCl8/s320/capacitor.jpg

Rumus Elektronika Dasar
Rumus elektronika dasar yang saya tuliskan dalam artikel ini semoga saja bisa membantu sobat semua mengingat kembali perlajaran yang telah lalu. Saya juga usahakan mendatakan semua rumusan yang ada. Semoga aja ngga ada yang terlewat ya. Bilapun ada, silahkan kontak saya melaui menu diblog ini untuk memberikan masukan. Baiklah, berikut daftar rumusnya:
Kuat Ars Listrik → Jumlh Muatn Listrik Yang Lewt Suat
Penghantr Tiap Detk.
I = Q / t

I → Kuat Ars Listrk ( Ampre )
Q → Jumlah Muatn ( Coulob )
t → Waktuu ( Detk )
Rumus elektronika dasar : Daya → Usah PerSatuan Wakt.
P = W / t 

P = Dayya ( Wattt )
W = Usaaha ( Joulee )
t = Wakttu ( Detiik )
Hambattan Jenis → Hambataan Yang Terdapatt Pada Pengantar Tiapp
Satu Satuaan Panjangg.
ρ = R . A / L

ρ = Hammbatan Jenis ( Ohmm )
R = Hambatann ( Ohhm )
A = Luas Penammpang Penghantarr ( m2 )
L = Panjangg Penghantaar ( m )
Hambataan Pada Suautu Kawat Penghanntar Tergantungg Pada :

a. Luas Pennampang Penghantaar.
b. Panjangg Penghantarr.
c. Hambbatan Jeniss.
R = ρ . L / q

ρ = Hambattan Jenis ( Ohmm )
R = Hambataan ( Ohm )
q = Luas Penammpang Penghantaar ( mm2 )
L = Panjangg Penghantarr ( m )
rumus elektronika dasar

Hambattan Listrikk → Hambatann Yg Terjaddi Pd Rangkaiian Listrik.
HUKUM OHMM.

Besarnyya Hambatan Listriik ini Sebandding Dg Beeda Potensialnya
( VOLT ), Sertta Berbanding Terbbalik Dg Kuaat Arusnya.
R = V / I 

I = V / R
V = I . R
Impedannsi → Jumlah Hambbatan Secara Veektor Pd Rangkkaian Arus
Bolaak – Baliik / AC.
1. Impeddansi Rangkaian Seeri R & L : Z = √ R2 + XL2
2. Impedanbsi Rangkaian Serri R & C : Z = √ R2 + XC2
3. Immpedansi Rangkaian Serii R – L & C : Z = √ R2 + ( XL – XC ) 2
Rumus Elektronika Dasar: Kapasitaas Kapasitor → Perbaandingan Antara Bessarnya Muatan
Salahh Satu Kepinng Kapasitoor Dg Bbeda
Potensiial Antar Kepping – Keping tssb.
C = q / V

C = Kappasitas Kalor ( Couulomb / Volt )
q = Muattan ( Coullomb )
V = Bedda Potensial ( VOOLT )
Reaktansii Induktif → Hambbatan Yg Ditiimbulkan Oleh Kuumparan /
Indukttor Pd Aruus Bolak-Ballik ( AC )

XL = ω.L
XL = 2.π.f.L 
ω = 2.π.f

Reaktansi Kapasitif → Hambatann Yg Ditimbbulkan Oleh Kappasitor Pd
Aruus Bolakk – Balik.
XC = 1 / ω.C 

XC = 1 / 2.π.f.C 
ω = 2.π.f
Fungsi simbol-simbol komponen elektronika yaitu untuk mempermudah dan mengetahui karakteristik komponen dalam sebuah rangkaian elektronika. 

Belajar elektronika haruslah memahami dan mengetahui, simbol-simbol komponen yang digunakan dalam sebuah rangkaian elektronika. Seperti halnya jika kita ingin memperbaiki peralatan elektronika, perusahaan pembuat peralatan akan menggambar rangkaian yang di produksinya pada skema rangkaian sehingga para pengguna/ teknisi akan mudah melacak kerusakan pada peralatan tersebut.

Pada gambar berikut adalah koleksi simbol-simbol komponen elektronika yang banyak digunakan dalam rangkaian elektronika :
Simbol Komponen Resistor
Fungsi Komponen Resistor
Koleksi Simbol dan Fungsi Komponen Elektronika
Resistor
Resistor berfungsi sebagai penghambat arus yang mengalir dalam rangkaian listrik
Koleksi Simbol dan Fungsi Komponen Elektronika
Resistor
Koleksi Simbol dan Fungsi Komponen Elektronika
Potensio Meter
Resistor berfungsi sebagai penghambat arus dalam rangkaian listrik, nilai resistansi dapat diatur
Koleksi Simbol dan Fungsi Komponen Elektronika
Potensio Meter
Koleksi Simbol dan Fungsi Komponen Elektronika
Variable Resistor
Resistor berfungsi sebagai penghambat arus dalam rangkaian listrik, nilai resistansi dapat diatur
Koleksi Simbol dan Fungsi Komponen Elektronika
Variable Resistor

Simbol Komponen Condensator
Fungsi Komponen Condensator
Koleksi Simbol dan Fungsi Komponen Elektronika
Condensator Bipolar
Berfungsi untuk menyimpan arus listrik sementara waktu
Koleksi Simbol dan Fungsi Komponen Elektronika
Condensator Nonpolar
Koleksi Simbol dan Fungsi Komponen Elektronika
Condensator Bipolar
Electrolytic Condensator (ELCO)
Koleksi Simbol dan Fungsi Komponen Elektronika
Kapasitor berpolar
Electrolytic Condensator (ELCO)
Koleksi Simbol dan Fungsi Komponen Elektronika
Kapasitor Variable
Condensator yang nilai kapasitansinya dapat diatur

Simbol Komponen Dioda
Fungsi Komponen Dioda
Koleksi Simbol dan Fungsi Komponen Elektronika
Dioda
Berfungsi sebagai penyearah yang dapat mengalirkan arus listrik satu arah (forward bias)
Koleksi Simbol dan Fungsi Komponen Elektronika
Dioda Zener
Penyetabil Tegangan DC (Searah)
Koleksi Simbol dan Fungsi Komponen Elektronika
Dioda Schottky
Dioda dengan drop tegangan rendah, biasanya terdapat dalam IC logika
Koleksi Simbol dan Fungsi Komponen Elektronika
Dioda Varactor
Gabungan Dioda dan Kapasitor
Koleksi Simbol dan Fungsi Komponen Elektronika
Dioda Tunnel
Dioda Tunnel
Koleksi Simbol dan Fungsi Komponen Elektronika
LED (Light Emitting Diode)
Akan menghasilkan cahaya ketika dialiri arus listrik DC satu arah
Koleksi Simbol dan Fungsi Komponen Elektronika
Photo Dioda
Menhasilkan arus listrik ketika mendapat cahaya

Simbol Komponen Transistor
Fungsi Komponen Transistor
Simbol dan Fungsi Komponen Elektronika
Transistor NPN
Arus listrik akan mengalir (EC) ketika basis (B) diberi positif
Simbol dan Fungsi Komponen Elektronika
Transistor PNP
Arus listrik akan mengalir (CE) ketika basis (B) diberi negatif
Simbol dan Fungsi Komponen Elektronika
Transistor Darlington
Gabungan dari dua transistor Bipolar untuk meningkatkan penguatan
Simbol dan Fungsi Komponen Elektronika
Transistor JFET-N
Field Effect Transistor kanal N
Simbol dan Fungsi Komponen Elektronika
Transistor JFET-P
Field Effect Transistor kanal P
Simbol dan Fungsi Komponen Elektronika
Transistor NMOS
Transistor MOSFET kanal N
Simbol dan Fungsi Komponen Elektronika
Transistor PMOS
Transistor MOSFET kanal P